Accounting for Linear Transformations of EEG and MEG Data in Source Analysis
نویسندگان
چکیده
Analyses of electro- and magnetoencephalography (EEG, MEG) data often involve a linear modification of signals at the sensor level. Examples include re-referencing of the EEG, computation of synthetic gradiometer in MEG, or the removal of artifactual independent components to clean EEG and MEG data. A question of practical relevance is, if such modifications must be accounted for by adapting the physical forward model (leadfield) before subsequent source analysis. Here, we show that two scenarios need to be differentiated. In the first scenario, which corresponds to re-referencing the EEG and synthetic gradiometer computation in MEG, the leadfield must be adapted before source analysis. In the second scenario, which corresponds to removing artifactual components to 'clean' the data, the leadfield must not be changed. We demonstrate and discuss the consequences of wrongly modifying the leadfield in the latter case for an example. Future EEG and MEG studies employing source analyses should carefully consider whether and, if so, how the leadfield must be modified as explicated here.
منابع مشابه
Correction: Accounting for Linear Transformations of EEG and MEG Data in Source Analysis
open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
متن کاملMultimodal integration: constraining MEG localization with EEG and fMRI
I review recent methodological developments for multimodal integration of MEG, EEG and fMRI data within a Parametric Empirical Bayesian framework [1]. More specifically, I describe two ways to incorporate multimodal data during distributed MEG/EEG source reconstruction under linear Gaussian assumptions: 1) the simultaneous inversion of EEG and MEG data using a common generative model [2], and 2...
متن کاملEEG and MEG Data Analysis in SPM8
SPM is a free and open source software written in MATLAB (The MathWorks, Inc.). In addition to standard M/EEG preprocessing, we presently offer three main analysis tools: (i) statistical analysis of scalp-maps, time-frequency images, and volumetric 3D source reconstruction images based on the general linear model, with correction for multiple comparisons using random field theory; (ii) Bayesian...
متن کاملMonte Carlo simulation studies of EEG and MEG localization accuracy.
Both electroencephalography (EEG) and magnetoencephalography (MEG) are currently used to localize brain activity. The accuracy of source localization depends on numerous factors, including the specific inverse approach and source model, fundamental differences in EEG and MEG data, and the accuracy of the volume conductor model of the head (i.e., the forward model). Using Monte Carlo simulations...
متن کاملEstimating true brain connectivity from EEG/MEG data invariant to linear and static transformations in sensor space
The imaginary part of coherency is a measure to investigate the synchronization of brain sources on the EEG/MEG sensor level, robust to artifacts of volume conduction meaning that independent sources cannot generate a significant result. It does not mean, however, that volume conduction is irrelevant when true interactions are present. Here, we analyze in detail the possibilities to construct m...
متن کامل